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Abstract

A method is presented for computing the instantaneous rate of conductive mass transport from a semi-in®nite

lattice of particles with arbitrary shape, in the limit as the particle size becomes small compared to the particle
separation. A ®xed rate of transport is imposed above the lattice, and the concentration is assumed to be constant
and uniform over the particles' surface. Transport due to forced or natural convection is neglected, and the particle
dissolution or evaporation is assumed to be limited by di�usion. In the mathematical formulation, the concentration

®eld induced by each particle layer is expressed in terms of the doubly-periodic Green's function of Laplace's
equation in three dimensions, which is evaluated using either a Fourier series or an alternative representation
involving rapidly converging Ewald sums. The rate of transport from each layer is found using the method of

matched asymptotic expansions resulting in a system of linear algebraic equations. Numerical results are presented
for lattices with di�erent con®gurations at various particle volume fractions, showing exponential decay of the rate
of transport with distance from the top layer, in agreement with theoretical predictions. Having obtained general

expressions for the rate of transport, a system of di�erential equations governing the evolution of the radii of
dissolving spherical particles is derived. Numerical solutions illustrate the distribution of the particle radii after a
periodic state has been established. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Evaporation of a particulate solid is a fundamental

process of mass transfer with a variety of natural and
industrial applications. Under typical conditions, the
evaporating species di�uses through a sparse or conso-
lidated matrix of particles and enters the ambience

under the in¯uence of an externally imposed concen-
tration gradient. A similar process occurs during the
drying of a porous medium or a concentrated suspen-

sion such as a paste or a photographic emulsion.
During the late stages of drying, the liquid phase

forms disconnected globules that are supported by an
underlying ®ber or particle network, and di�usion
occurs through the interstitial spaces and into the dry

environment.
Conductive transport across a particulate medium

has been studied on many occasions with the main
goal of estimating the e�ective medium conductivity or

di�usivity as a function of the particulate phase micro-
structure and volume fraction (e.g. [1,2]). In the math-
ematical modeling, the medium is often assumed to be

spatially periodic and thus represented by a triply-per-
iodic particle array embedded in a matrix. In the limit
of small volume fractions, the analysis is conducted

using the method of matched asymptotic expansions.
Models of evaporation or drying of a particulate me-
dium of ®nite extent are typically based on the con-
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tinuum approximation that neglects the discrete nature

of the medium across which transport takes place (e.g.

[3]). The rate of change of thickness or position of the

interface of the evaporating species is then computed

by performing a one-dimensional material balance

assuming a constant or position-dependent e�ective

di�usivity. These models are adequate for rough engin-

eering estimates, but fail to provide us with insights

into the fundamental physical processes occurring on

the level of the microstructure.

In the present paper, we study transport through a

semi-in®nite particulate medium with a well-de®ned

interface, where the transport is due to a scalar gradi-

ent maintained far above the interface. The particulate

phase consists of a ®xed, but possibly evaporating,

semi-in®nite matrix of liquid or solid particles whose

size is small compared to the inter-particle separation.

Transport due to natural or forced convection is

neglected, and the particle dissolution or evaporation

is assumed to be limited by di�usion. Using the

method of matched asymptotic expansions, whose im-

plementation requires the availability of the doubly-

periodic Green's function of Laplace's equation in

three dimensions, we derive expressions for the rate of

transport from the particles, and then develop evol-

ution equations for the particle size.

An analogy exists between the problem presently

considered, and the problem of shear ¯ow over a semi-

in®nite porous medium modeled as a semi-in®nite

matrix of rigid particles. The drag force exerted on the

particles in the ¯uid ¯ow problem is the counterpart of

the rate of mass transport in the present problem.

Larson and Higdon [4,5] presented numerical results

for axial and transverse ¯ow through a semi-in®nite

lattice of cylinders, obtained by a boundary-integral

method, and discussed the relevance of Brinkman's

Nomenclature

al typical size or radius of spherical particles
in the lth layer

ai base vectors of the Bravais lattice, i= 1,

2, 3
A surface area of a planar lattice cell
bi base vectors of the reciprocal (wave num-

ber) lattice
B bottom of control volume
c concentration

c0 concentration at the particle surface
cD displacement constant of the concentration

pro®le
cÿ1 concentration far below a lattice comprised

of a ®nite number of layers
ei unit vectors along three Cartesian axes,

i= 1, 2, 3

d1k lattice con®guration constant associated
with the Green's function

D mass di�usivity

G 3D±2P Green's function of Laplace's equation
hl mass transfer coe�cient of particles in the

lth layer

L characteristic lattice size
m molecular weight
M in¯uence matrix
n unit normal vector pointing outward from

the particles
NLR number of particle layers
Nul Nusselt number for particles in the lth

layer
NuLatticel lattice Nusselt number for particles in the

lth layer

p pressure
P particle surfaces
q1 mass ¯ux far above the top layer

Q rate of mass transport across a planar cell
Ql rate of mass transport from the particles in

the lth layer

s projection of the position vector onto the
plane of a lattice

S surface area

T top of a control volume
x position vector
x0 position vector
Xi location of the ith vertex of the Bravais

lattice
u velocity vector

Greek symbols

d delta function in three dimensions
m ¯uid viscosity
rl density of particles in the lth layer
s rate of decay of the rate of transport down

the lattice
f particle volume fraction in the matrix

Subscripts and superscripts

l, k labels of particle layers numbered from the
top

m, n lattice node indices
3D±2P three-dimensional and doubly-periodic

i ranges over 1, 2, 3 or x, y, z
1 indicates the far-®eld value
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equation near the interface. In the case of axial ¯ow,
the non-zero velocity component satis®es the two-
dimensional Laplace equation with homogeneous
boundary conditions imposed around the cylinder con-

tours. Thus, the numerical results of Larson and
Higdon [4] may be reinterpreted in the present context
of conductive transport from ®brous particles with

cylindrical shapes. Most relevant to the present prob-
lem is the work of Sangani and Behl [2] who con-
sidered thermal conduction from a semi-in®nite matrix

of spherical particles, as well as di�usion accompanied
by chemical reaction occurring either in the interior or
on the surface of the particles. The present problem
formulation and results are complementary to the ones

presented by the previous authors.

2. Mathematical formulation

Consider mass transport across the surfaces of an in-
®nite number of particles located at the nodes of a

semi-in®nite lattice, as illustrated in Fig. 1. The nodes
of the lattice are located the points xn � x0 � Xn,
where x0 is the position of any one node. The vectors

Xn de®ne the vertices of a three-dimensional semi-in®-
nite Bravais lattice described by

Xn � i1a1 � i2a2 � i3a3 �1�

where a1, a2, a3 are three speci®ed base vectors. The
integers i1 and i2 take values from ÿ1 to 1, whereas

the integer i3 takes values over a semi-in®nite set of
integers describing the semi-in®nite lattice.
Without loss of generality, we use Cartesian axes

with the xy or 12 plane parallel to the plane that con-
tains a1 and a2, which is designated as the horizontal

plane. The areas of the planar cells corresponding to
di�erent particle layers are not necessarily equal, but
the structure of the layers must be such that the

periodicity of the concentration ®eld conforms with
that of the top-layer. For simplicity, however, we shall
assume that the three base vectors are constant and

the areas of the planar cells are equal to A.
Particles that lie in a horizontal layer corresponding

to a particular value of the index i3 introduced in (1)

are assumed to be identical in shape and size, but vari-
ations are allowed across di�erent layers down the
matrix. The concentration c of a species at the surface
of each particle is assumed to be uniform and equal to

c0. For the applications we have in mind, c0 may be
identi®ed with the vapor pressure of the solid or liquid
material comprising the particles. In the intervening

space, the species concentration satis®es Laplace's
equation H2c = 0. Mass is transported through suc-
cessive layers toward the top layer and then into the

semi-in®nite ambience above the matrix. The concen-
tration ®eld far above the top layer takes the asymp-
totic form

c � ÿq
1

D
z� cD � edt �2�

where q1 is the uniform ¯ux far above the top layer,
D is the species di�usivity, cD is a displacement con-
stant of the concentration pro®le corresponding to the

designated origin of the z axis, and edt stands for `ex-
ponentially decaying terms'. Far below the top layer,
the rate of mass transport vanishes, and the concen-
tration tends to the particle surface value c0.

If the number of particle layers and thus the depth
of the matrix were ®nite, the concentration far below
the bottom layer would not tend to the particle surface

value c0, but would tend instead to another uniform
value cÿ1 that is higher than c0. This asymptotic value
cannot be speci®ed in the statement of the problem

but must be computed as part of the solution.

2.1. Integral representation

As a preliminary, we introduce the doubly-periodic
Green's function of Laplace's equation in three dimen-
sions, denoted as G 3D±2P(x, x0), with dimensions of

inverse length. By de®nition, this Green's function
satis®es the singularly forced Laplace's equation

r2G 3D±2P�x, x0� �
X1

m, n�ÿ1
d�xÿ xmn� � 0 �3�

where xmn is the position of singularities in a planar
lattice corresponding to a certain value of i3=l in Eq.

Fig. 1. A model medium consisting of a semi-in®nite lattice of

particles arranged in parallel layers. Mass transport occurs

through the layers and into the overlying ambience. The con-

centration at the particle surface is assumed to be constant.
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(1), and d is the three-dimensional delta function with
dimensions of inverse cubed length. As the ®eld point

x moves far below the layer, G 3D±2P(x, x0) is required
to vanish. As x moves far above the layer, the Green's
function exhibits the asymptotic behavior

G 3D±2P�x, x0� � ÿ 1

A
�zÿ z0� � edt �4�

where A is the area of the planar cell. Because of these
properties, the Green's function does not observe the
usual invariance with respect to transposition of its

argument, but satis®es instead the identity

G 3D±2P�x, x0� � G 3D±2P�x0, x� ÿ 1

A
�zÿ z0�: �5�

Two methods of computing G 3D±2P(x, x0) will be dis-
cussed in section 3.

Next, we select a control volume that contains one
period of the semi-in®nite lattice depicted in Fig. 1,
with top and bottom surfaces located at large but ®nite

distances above or below the top layer. For con-
venience, we assume that the top surface is horizontal.
The concentration at a point x that is located within

the control volume may be expressed in terms of a
boundary integral representation as

c�x� � ÿ
�

P, B, T

�n �rc��x0� G 3D±2P�x0, x� dS�x0�

�
�

P, B, T

c�x0� n�x0� � rG 3D±2P�x0, x� dS�x0� �6�

where n is the unit vector pointing into the control
volume, and P, B, T stand, respectively, for the sur-

faces of the particles, bottom, and top of the control
volume (e.g. [6]). The integrals over the sides of the
control volume cancel due to the inherent periodicity

of the Green's function and the assumed periodicity of
the concentration ®eld, and were not included. The
®rst and second integrals on the right-hand side of (6)

are called, respectively, the single-layer and the double-
layer harmonic potentine.
As the bottom of the control volume is shifted to

negative in®nity, the concentration tends to become

constant, the Green's function decays to zero at an ex-
ponential rate, and the corresponding integrals in (6)
vanish. Because the concentration over each particle

surface is constant, it can be brought outside the
double-layer integral, and the properties of the Green's
function guarantee that the corresponding integrals

vanish. As the top of the control volume is shifted to
in®nity, the Green's function behaves as shown in Eq.
(4), and the representation (6) simpli®es to

c�x� � ÿ
�

P

�n � rc��x0� G 3D±2P�x0, x� dS�x0�

� q1
DA

�
T

�zÿ z0� dS�x0� � 1

A

�
T

c�x0� dS�x0�: �7�

Using property (5) to switch the arguments of the
Green's function within the ®rst integral on the right-

hand side of Eq. (7), we ®nd

c�x� � ÿ
�

P

�n � rc��x0� G 3D±2P�x, x0� dS�x0�

� 1

A

�
P

�n � rc��x0� �zÿ z0� dS�x0�

� q1
DA

�
T

�zÿ z0� dS�x0� � 1

A

�
T

c�x0� dS�x0�:

�8�

The sum of the last three terms may be simpli®ed by
use of the reciprocal theorem for harmonic functions
written for the harmonic concentration ®eld c and for

the non-singular harmonic function zÿz0, yielding�
P, B, T

�n � rc��x0� �zÿ z0� dS�x0�

�
�

P, B, T

c�x0� � n�x0� r�zÿ z0� dS�x0� �9�

which is the counterpart of the boundary integral rep-
resentation (6). Simplifying as previously, we ®nd�

P

�n � rc��x0� �zÿ z0� dS�x0� � q1
D

�
T

�zÿ z0� dS�x0�

� c0Aÿ
�

T

c�x0� dS�x0�: �10�

Finally, we combine Eqs. (8) and (10) to obtain the

compact integral representation

c�x� � c0 ÿ
�

P

�n � rc��x0� G 3D±2P�x, x0� dS�x0� �11�

which expresses the concentration ®eld in terms of a
distribution of point sources of mass deployed over the
particle surfaces.
Placing the point x on the particle surfaces, and

requiring the satisfaction of the boundary condition
c=c0, we obtain a homogeneous Fredholm integral
equation of the ®rst kind for the distribution of the de-

rivative of the concentration normal to the particle sur-
faces. A nontrivial solution arises by requiring the
global mass balance

ÿD
�

P

�n � rc��x0� dS�x0� � Aq1 �12�

where A is the area of a planar cell. As a practical
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alternative, we may apply the representation (11) at a
point that is located far above the top layer, neglect

the exponentially decaying terms, and thereby sup-
plement the integral equation with an algebraic
equation, while also introducing the additional

unknown cD de®ned in Eq. (2).

2.2. Formulation for small volume fractions

When the size of all particles is su�ciently small
compared to the characteristic particle separation L,

which can be identi®ed with the smallest of the magni-
tudes of the base vectors va1v, va2v, or va3v, we may ap-
proximate the Green's function within the integral
over each particle on the right-hand side of (11) with a

constant. This simpli®cation provides us with the ap-
proximate representation

c�x� � c0 � 1

D

X1
l�1

QlG
3D±2P�x, xl� �13�

where xl is the designated center of any one particle

that belongs to the lth layer, and the coe�cient Ql is
the rate of mass transport from the surface of each
particle that belongs to the lth layer, measured in

moles per unit time.
Using property (4), we ®nd that far above the top

layer, the right-hand side of (13) produces

c�x� � c0 ÿ 1

DA

X1
l�1

Ql�zÿ zl�: �14�

A comparison with Eq. (2) gives

q1 � 1

A

X1
1

Ql �15�

and

cD � c0 ÿ 1

DA

X1
1

Ql j zl j �16�

which shows that the displacement concentration con-
stant cD is less than c0.
To compute the rate of mass transport from each

particle, we use the method of matched asymptotic
expansions. First, we consider transport in the inner
regime surrounding a particle, and account for the
presence of all other particles by requiring an appro-

priate far-®eld boundary condition. Let hk be the mass
transfer coe�cient for a solitary particle that lies in the
kth layer; for a spherical particle of radius ak, we have

hk=D/ak. Then, by de®nition,

Qk � hk4pa2k�c0 ÿ c1k � �17�

where c1k is the far-®eld value. To compute this value,
we observe the limit of the right-hand side of Eq. (13)

as the ®eld point x approaches the designated particle
center, and keep only the terms that are singular or
tend to a constant value ®nding

c�x� � Qk

4pD
1

j xÿ xk j �
Qk

D
d 1k

� 1

D

X1
l�1, l 6�k

Ql G
3D±2P�xk, xl� � c0 �18�

where d1k is a lattice con®guration dependent constant
with dimensions of inverse length. This constant fol-

lows readily from the general expression for the
Green's function to be discussed in the next section.
Invoking now the general principles of matched

asymptotic expansions, we identify the constant ck
1

with the sum of the last three terms on the right-hand
side of (18). Substituting into Eq. (17) we ®nd

Qk � ÿhk4pa
2
k

D

 
Qkd

1
k �

X1
l�1, l 6�k

Ql G
3D±2P�xk, xl�

!
�19�

which may be rearranged to give the homogeneous
equation

MklQl � 0: �20�

We have introduced the in¯uence matrix M with com-
ponents

Mkl � hk4pa2k
D

G 3D±2P�xk, xl� �21�

for k$ l, and

Mkk � 1� hk4pa2k
D

d 1k �22�

where summation over k is not implied on the left-
hand side of (22).

The elements of the matrix M may be conveniently
expressed in terms of the lattice Nusselt number
de®ned as

NuLattice
k � hka

2
k

DL
� Nuk

ak
L

�23�

where Nuk � hkak=D is the usual particle Nusselt num-
ber; for a spherical particle, Nuk=1 and

NuLattice
k � ak=L. Subject to the preceding de®nition,

Eqs. (21) and (22) become

Mkl � 4pNuLattice
k LG 3D±2P�xk, xl� �24�

for k$ l, and
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Mkk � 1� 4pNuLattice
k Ld 1k : �25�

It is important to note that the e�ects of the particle
shape and size have been incorporated into the lattice

Nusselt number. For any particle shape, including
shapes with ®ne indentations and fractal geometry, the
lattice Nusselt number is proportional to the particle

size de®ned with respect to the particle volume. Thus,
the assumption of small particle size guarantees the
smallness of the lattice Nusselt number.
Expression (17) would remain valid even if linear

terms were retained on the right-hand side of expan-
sion (13). These terms would produce an antisymmetric
distribution of the concentration with respect to the

three spatial coordinates, to be used as the far-®eld
condition in solving Laplace's equation in the inner
regime, and would thus make a vanishing contribution

to the overall transport rate. The error associated with
expressions (24) and (25) is thus on the order of (ak/
L )2.
As it stands, the linear system (20) has the obvious

solution Ql=0 for all values of l, but this triviality is
removed by imposing an appropriate physical con-
straint, as discussed in the preceding subsection.

2.2.1. Decay of the transport rate down the lattice
As the ratios ak/L tend to vanish, the upper left

square block of M tends to become diagonal, and an
asymptotic behavior is established whereupon the rate
of mass transfer tends to become uniform across the

top layers. We note, however, that the Green's func-
tion on the right-hand side of Eq. (24) grows linearly
with the distance above a certain layer and vanishes
far below the layer. Thus, in spite of the assumed

smallness of the lattice Nusselt number, the right-hand
side of (24) is not necessarily small for well separated
layers. To establish the asymptotic behavior far below

the top layer, we note that the solution of the discrete
problem bears some resemblance to the solution of the
integral equation

�1� 4pLNuLattice�w� d1�w��Q�w�

� 4pL
V

NuLattice�w�
�w
ÿ1
�vÿ w�Q�v� dv � 0 �26�

where NuLattice(w ) expresses the particle radii distri-

bution down the semi-in®nite matrix, V � A j a3 � e3 j
is the volume of the unit cell, and e3 is the unit vector
along the z axis. Approximating NuLattice(w ) with a

constant, neglecting it from the expression within the
®rst set of parentheses in (26), and di�erentiating the
resulting equation twice with respect to w, we derive

an elementary second-order linear di�erential equation
for Q(w ). A solution that decays as w tends to negative
in®nity is given by

Q�w� � beÿsjwj �27�

where b is an arbitrary constant, and s is the rate of

decay given by

s �
�
4pL
V

NuLattice

�1=2

: �28�

Since the lattice Nusselt number is proportional to the
equivalent particle radius which is de®ned as the radius

of a sphere with the same volume, Eq. (28) suggests
that the rate of decay s is proportional to the particle
volume fraction raised to the 1/6 power. Based on Eq.

(27), we expect that the rate of transport from the par-
ticles will decrease in an exponential fashion with
respect to distance from the top layer. This behavior
will be con®rmed by the numerical results presented in

section 4.

2.2.2. Evolution of particle sizes

Having established an expression for the rate of
mass transfer from the kth layer, we may derive evol-
ution equations for the particle sizes, subject to the ad-

ditional assumption that the rates of change of the
particle radii dak/dt are much smaller than the dif-
fusion time a 2

k/D. When this condition is met, trans-
port occurs through a sequence of quasi-steady states.

Assuming, for example, that the particles are, and
remain, spherical with radius ak(t ), which will be true
in the case of evaporation of small liquid drops, or in

the case of moderate sized drops with large surface
tension, we write,

rk
dVk

dt
� 4prka

2
k

dak
dt
� ÿmQk�a1, a2, . . . � �29�

where Vk is the particle volume, rk is the particle den-
sity, and m is the vapor phase molecular weight.
Rearranging the right-hand side, we obtain the non-

linear autonomous system of ordinary di�erential
equations

dak
dt
� ÿ m

4prka
2
k

Qk�a1, a2, . . . � �30�

which can be solved subject an appropriate initial con-
dition up to the time where the radius of a particle

becomes equal to zero; that is, up to the time where a
particle completely evaporates.

3. Computation of the Green's function

To obtain quantitative results, we require readily

computable expressions for the doubly-periodic
Green's function of Laplace's equation with singular
points located at the nodes xn � x0 � Xn, where x0 is
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the position of any one singularity. The points Xn de-
®ne the vertices of a two-dimensional Bravais lattice
described by

Xn � i1a1 � i2a2 �31�

where i1, i2 are two integers, and a1, a2 are two base
vectors parallel to the 12 or xy plane, as shown in Fig.
2. As the ®eld point x moves far below the xy plane,
the Green's function is required to vanish.

We begin by introducing the area of the dimensional
unit cell A �j a1 � a2 j, and the reciprocal wave-num-
ber base vectors

b1 � 2p
A

a2 � e3, b2 � 2p
A

e3 � a1 �32�

where e3 is the unit vector along the z axis.
Furthermore, we de®ne the vertices of the reciprocal

wave number Bravais lattice

ll � j1b1 � j2b2 �33�

where j1, j2 are two integers.
Using the method of Fourier transform, we ®nd that

the Green's function is given by

G 3D±2P�x, x0� � 1

A

"
ÿ a j Ãx0 � e3 j

�1
2

X
l, jllj6�0

1

j ll j cos�ll � Ãx0� exp�ÿ j ll jj Ãx0 � e3 j�
#
�34�

where a=1 when xÃ 0 � e3 > 0, and 0 otherwise, and we
have introduced the distance of the ®eld point x from

a singular point xn

Ãxn � xÿ xn: �35�

Expression (34) is useful when the ®eld point x is
located su�ciently far from the plane of the singular-

ities, for then the exponential factors multiplying the
cosines decay at a fast rate. As the observation point

approaches the plane of the singular points, the accu-
rate computation of the Fourier series requires an
increasing number of terms; the method fails when the

observation lies in the plane of the singularities.
Clearly, the Fourier expansion is not useful for com-
puting the ®eld at the position of one singularity

induced by all other singularities in its plane.
It is thus imperative that we develop an alternative

method for computing the doubly-periodic Green's

function. Several attempts have been made to compute
this Green's function directly in terms of Ewald sums
[2], but an indirect method developed by Hautman and
Klein [7] in the context of molecular ®elds is the best

performer. We begin by de®ning the projection s of the
®eld point x onto the plane of the singularities, as
shown in Fig. 2, and introduce the distance of the pro-

jection from a singular point xn,

ŝn � sÿ xn: �36�

The Green's function is computed in ®ve parts, as fol-
lows:

G 3D±2P�x, x0� � ÿ a
A
j Ãx0 � e3 j

� 1

4p

�
R�x, x0� � S0 ÿ 1

2
j Ãx0 � e3 j2 S1

� 3

8
j Ãx0 � e3 j4 S2

� �37�

where

R�x, x0� �
X
n

 
1

j Ãxn j ÿ
1

j ŝn j �
1

2

j Ãx0 � e3 j2
j ŝn j3

ÿ 3

8

j Ãx0 � e3 j4
j ŝn j5

!
�38�

and the summation is over all singularities. The

summed terms on the right-hand side of (38) decay
like 1/vsÃ nv7, and this allows for an expedient numerical
summation. When, in particular, the observation point
x lies in the plane of the singularities, R(x, x0) is iden-

tically equal to zero and does not need to be com-
puted. More generally, the indices i1 and i2 introduced
in Eq. (31) for summation in the plane of the singular-

ities on the right-hand side of (38), may be truncated
at an appropriate level that depends on the distance of
the observation point from the plane of the singular-

ities.
The rest of the functions that appear on the right-

hand side of Eq. (37) are de®ned as follows:

Fig. 2. Illustration of a planar lattice of singularities used to

derive the doubly-periodic Green's function of Laplace's

equation.
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Fig. 3. Transport through a semi-in®nite lattice of identical particles with radius a, for various lattice Nusselt numbers. Graphs of

the fractional rate of transport beneath the top layer for: (a) a simple cubic lattice described by a1=Le1, a2=Le2, a3=Le3, for

NuLattice=0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4; (b) a body-centered cubic lattice described by a1=Le1, a2=Le2, a3=

0.5L (e1+e2+e3), for NuLattice=0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3.
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�

X
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jll j6�0
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j ll jerfc
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S1 �
X
n

1ÿH1�x j ŝn j�
j ŝn j3

ÿ 2p
A

X
l

jll j6�0

cos�ll � Ãx0� j ll j erfc

� j ll j
2x

�
�40�

S2 �
X
n

1ÿH2�x j ŝn j�
j ŝn j5

� 2p
A

1

9

X
l

jll j6�0

cos�ll � Ãx0� j ll j3 erfc

� j ll j
2x

�
�41�

where x is an Ewald summation parameter determining

the balance between the sums in real space and wave
number space on the right-hand sides of the preceding
three equations. The splitting functions H0, H1, H2

within the real-space sums on the right-hand side of
Eqs. (39)±(41) are given by

H0�w� � erf�w� �42�

H1�w� � erf�w� ÿ 2���
p
p w�1� 2w2� exp�ÿw2� �43�

H2�w� � erf�w�

ÿ 2���
p
p w

�
1� 2

3
w2 ÿ 4

9
w4 � 8

9
w6

�
exp�ÿw2� �44�

where erf is the error function. The Gaussian decay of
these functions, combined with the Gaussian decay of
the complementary error function on the right-hand

side of (39)±(41), are crucial for the success of the nu-
merical method. The results are, and have been con-
®rmed to be, independent of x, with the optimal value
for the least computational e�ort depending on the lat-

tice geometry. In practice, with the optimal choice, the
indices i1 and i2, de®ned in Eq. (31) for summing in
real space, and the indices j1 and j2, de®ned in Eq. (33)

for summing in wave number space, are truncated at a
moderate level on the order of ®ve.
The second method of computing the Green's func-

tion is useful when a ®eld point is located near, or lies
in the plane of the singularities. As the ®eld point
moves away from the plane of the singularities, the

Fourier series method described earlier becomes more
e�cient.

4. Results and discussion

In the numerical computations, we specify the over-

all rate of mass transfer from each planar cell
Q � Aq1, and truncate the linear system (20) at a cer-
tain level NLR. We then arbitrarily specify the value

of QNLR, and solve the top NLRÿ1 equations for Ql,
l = 1, . . . , NLRÿ1, by the method of Gauss elimin-
ation. Having produced the solution, we normalize it
to satisfy the constraint (15). Numerical di�culties

were not encountered, apart for numerical under¯ow
occurring when a large number of layers with rapidly
decaying rates of transport were retained.

First, we discuss results on the rate of transport
from a lattice of identical particles, for a range of the
lattice Nusselt number Nu Lattice de®ned in Eq. (23).

We recall that for a spherical particle of radius a,
NuLattice=a/L. In Fig. 3, we plot the logarithm of the
fractional rate of transport Ql/Q against the reduced
distance from the top layer svzlv/L, where the theoreti-

cal rate of decay s was de®ned in Eq. (28). Fig. 3(a)
corresponds to a simple cubic lattice described by
a1=Le1, a2=Le2, a3=Le3, and the curves correspond

to NuLattice=0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3,
0.4, shifted upwards in this progression. Fig. 3(b) cor-
responds to a body-centered cubic lattice described by

a1=Le1, a2=Le2, a3=0.5L(e1+e2+e3), and the curves
correspond to NuLattice=0.001, 0.005, 0.01, 0.02, 0.05,
0.1, 0.2, 0.3, shifted upwards in this progression. Note

that for the highest value of NuLattice, the particulate
nature of the matrix is apparent.
Eq. (27) predicts that for small NuLattice, as vzlv tends

to in®nity, the graphs in Fig. 3 will tend to become

straight lines with slope equal to ÿ1. Not only is this
reproduced by the numerical solution, apart from the
curved tail-ends due to numerical truncation, but also

the exponential decay describes almost the whole of
the distribution up to the top layer. For both lattice
types described in Fig. 3, as NuLattice becomes smaller,

the magnitude of Ql/Q near the interface is reduced
because more layers contribute to the rate of transport.
For example, for the simple cubic lattice represented
by Fig. 3(a), when NuLattice=0.01, it takes approxi-

mately ten layers for the rate of transport to decrease
by one order of magnitude. As NuLattice is raised, the
top layers shield the lower ones, and Ql/Q shows a ®rst

decay.
Comparing corresponding curves in Fig. 3(a) and

(b), we observe similar behaviors, with quantitative

di�erences present but not prominent. For a certain
value of NuLattice, the rate of transport from the top
layer of the simple cubic lattice is higher than that of
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the body-centered cubic lattice; correspondingly, a
lower number of layers contribute to the overall rate

of transport. Similar behavior was observed for di�er-
ent lattice types including the orthorhombic and the
hexagonal.

Having established the physical relevance of the ex-
ponential form (27), we may introduce an average con-
centration hci and compute it by solving the following

one-dimensional di�usion equation with an appropri-
ate source term included

D
d2hci
dz2
�Qs exp�sz� � 0 �45�

where ÿ1< z< 0. The solution is

hci � c0 ÿ Q

Ds
exp�sz� �46�

which illustrates the exponential decay of the average
®eld down the semi-in®nite matrix. Above the matrix,
the average ®eld increases linearly with distance yield-

ing a composite pro®le. Combining the preceding two
equations we ®nd

d2hci
dz2
ÿ s2�hci ÿ c0� � 0 �47�

which is similar to Brinkman's equation describing the

¯ow near the surface of a porous medium [2].
Next, we consider the evolution of spherical particles

due to evaporation, governed by Eq. (30). In the nu-

merical computations, a ®nite number of particle layers
on the order of twenty were retained, and the ordinary
di�erential equations were integrated in time using the
second-order Runge±Kutta method with a constant

time step. The equation for the top layer was removed
from the truncated system when the corresponding
particle radii have vanished. At the initial instant, all

particles were assumed to have a uniform radius a0.
In Fig. 4(a), we plot the particle radii a/L against

reduced time t̂ � mQt=�rL3� for the simple cubic lattice

described in a previous paragraph, and for a0/L = 0.1.
Successive curves correspond to adjacent particle
layers. The numerical results show that a periodic state
is rapidly established in which the top particles evapor-

ate, only to be replaced by particles residing in the
next layer. The period T between the time where a par-
ticle has reached the top and the time where it has

completely disappeared, is equal to the distance
between two successive zero crossings in Fig. 4(a), fol-
lowing the initial transition period. We note that, after

the periodic state has been established, one particle per
surface cell completely evaporates within the time T,
and this suggests

T � r
mQ

4p
3
a30 �48�

or in dimensionless form, T̂ � mQT=�rL3� �
�4p=3��a0=L�3. This value is recovered with high pre-
cision from the results of the numerical computations.

After the periodic state has been established, the dis-
tribution of the particle radii down the semi-in®nite
matrix becomes a periodic function of time. This distri-

bution arises by locating the intersections between the
curves in Fig. 4(a) and a vertical line drawn at a cer-
tain time. In Fig. 4(c), we plot, with ®led circles, the
radii of successive layers at the time when the top

layer has just disappeared, and observe a rapid decay.
At that time, the radii of the top particles are roughly
77% of those of the particles in the ®fth layer, and the

latter is very close to the radii of the particles deep
down the matrix.
Similar results were obtained for di�erent volume

fractions and lattices with di�erent geometry. As an
example, in Fig. 4(b) we plot the particle radii a/L
against reduced time t̂ � mQt=�rL3� for the body-cen-

tered cubic lattice described previously. In Fig. 4(c), we
plot with solid squares, the radii of successive layers at
the time where the top layer has just vanished. Because
a larger number of layers contribute to the rate of

transport at any instant, as seen in the graphs pre-
sented in Fig. 3, the square symbols in Fig. 4(c) lie
underneath the circles, yielding a more gradual tran-

sition to the deep-matrix radii.

5. Conclusions and discussion

We have developed an integral formulation that
describes the rate of transport from a semi-in®nite lat-
tice of particles, and performed an asymptotic expan-

sion to study the behavior in the limit of small volume
fractions. An important aspect of the integral formu-
lation is the use of the doubly-periodic Green's func-

tion of Laplace's equation which was computed in the
form of a rapidly converging series developed by
Hautman and Klein [7]. This Green's function arises in

a variety of contexts including electrostatics, convective
transport, potential ¯ow, and creeping ¯ow. Results of
numerical computations con®rmed the exponential
decay of the rate of transport with distance from the

interface, and illustrated the distribution of the particle
size near the interface of an evaporating matrix. The
lattice geometry was seen to play a secondary role in

determining the qualitative features of transport.
To study conductive transport from particles with

moderate and large size, as well as transport from par-

ticles with evolving shapes, it is necessary to solve the
integral equation for the distribution of the ¯ux over
the particle surfaces developed in section 2 using a nu-
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merical method. Two possibilities are the boundary el-

ement method [6] and the method of multi-pole expan-

sions [2]. Previous experience with similar problems

suggests that for ®xed particle geometry, the asympto-

tic results derived in this paper provide us with accu-

rate predictions for particles whose radius is

comparable to, or less than half the particle separation

[8]. It would be reassuring, however, to con®rm this

expectation by use of numerical methods.

The formulation in section 3 may be extended in a

straightforward manner to describe shear ¯ow over the
surface of the semi-in®nite particle lattice illustrated in

Fig. 1, modeling an ordered semi-in®nite porous me-
dium. At vanishing Reynolds number, the motion of
the ¯uid is governed by the linear equations of Stokes

¯ow including the continuity equation and the Stokes
equation:

r � u � 0, ÿ rp� mr2u � 0 �49�

Fig. 4. Evolution of the particle radii a/L with respect to reduced time t̂ � mQt=�rL3� for successive layers corresponding to (a) the

simple cubic lattice, and (b) the body-centered cubic lattice. (c) Distribution of particle radii at the time when the top layer has dis-

appeared; the ®lled circles are for the simple cubic lattice, and the ®lled squares are for the body-centered cubic lattice.
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where u is the ¯uid velocity, p is the pressure, and m
is the ¯uid viscosity [e.g. 6]. Far above the top
layer, the velocity obtains the asymptotic form

u1 � �kze� uslip�, where k is the constant shear rate, e
is a unit vector parallel to the xy plane, and uslip is a
slip-velocity corresponding to the designated origin of

the z axis. An integral formulation for the problem of
shear ¯ow is presented in [8] along with an asymptotic
analysis for small particle sizes and numerical solutions

for ¯ow over a single particle layer representing a por-
ous plate.
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